
Beyond HTTPS -
HSTS, TLS, HPKP, CSP

and friends
Western Mass Development Technology Users Group

October 19, 2017

Robert Hurlbut
RobertHurlbut.com • @RobertHurlbut

http://roberthurlbut.com/
http://www.twitter.com/roberthurlbut

Robert Hurlbut

Software Security Architect
Microsoft MVP – Developer Security 2005-2009, 2015-
2018

(ISC)2 CSSLP 2014-2017

Co-host with Chris Romeo – Application Security Podcast

Contacts
Web Site: https://roberthurlbut.com
Twitter: @RobertHurlbut,
@AppSecPodcast

© 2017 Robert Hurlbut

https://roberthurlbut.com/
https://www.twitter.com/roberthurlbut
https://twitter.com/appsecpodcast

SSL / TLS

If not already, consider HTTPS (TLS 1.1 or
1.2)

Make sure all site is using HTTPS

Use strong certificate – at least SHA-256,
2048 bit key (no SHA-1, SSL 1, etc.)

Test here: https://www.ssllabs.com/ssltest/

© 2016 Robert Hurlbut 3

https://www.ssllabs.com/ssltest/

Self-signed SHA-256 Certificate

makecert.exe -r -pe -n "CN=%1" -b 01/01/2015 -e 01/01/2020
-eku 1.3.6.1.5.5.7.3.1 -sky exchange -a sha256 -len 2048 -ss my
-sr localMachine -sp "Microsoft Enhanced RSA and AES
Cryptographic Provider" -sy 24

(See CreateSelfSignedSHA256SslCert.bat under
https://github.com/rhurlbut/HttpsTools)

Installs self-signed SHA256 certificate into the
My/LocalMachine store

Useful for local dev / testing websites

© 2016 Robert Hurlbut 4

https://github.com/rhurlbut/HttpsTools

Security Headers

Added layer of security sent with HTTP/S Response
Headers

Others: Content-Security-Policy, X-Content-Type-
Options, X-Frame-Options and X-XSS-Protection.

HTTPS only: Strict-Transport-Security and Public-
Key-Pin

Test: https://securityheaders.io/

© 2016 Robert Hurlbut 5

https://securityheaders.io/

This talk is based on a talk given by Sun
Hwan Kim and Julien Sobrier (both work
at Salesforce) at AppSecCali 2017 – slides
used by permission.

See original here:
https://appseccali2017.sched.com/event/8wRA/
hsts-tls-hpkp-csp-putting-them-all-together-to-
move-to-https

© 2017 Robert Hurlbut

https://appseccali2017.sched.com/event/8wRA/hsts-tls-hpkp-csp-putting-them-all-together-to-move-to-https

Acronyms, etc.

We’re talking about HTTP response headers

HPKP = HTTP Public Key Pinning (report or block)

HSTS = HTTP Strict Transport Security

CSP = Content Security Policy (report or block)

Secure cookie = cookie with secure flag

HTTPS/SSL = TLS (for this talk)

Agenda

Divide and conquer
Domain separation

TLS version(s)

Enforce HTTPS on your domains
HSTS and secure Cookie

Public Key Pinning

CSP
CSP reports

Enforce HTTPS on 3rd party domains
CSP enforced

Multiple domains

Use multiple domains or subdomains to

divide a big problem into smaller problems

API vs Browser

Static vs live content

CDN as a separate domain/subdomain

Subdomain per customer

But letting users bring their own CNAME

makes things more complicated.

Divide and conquer

Why sub-domains?

HSTS/HPKP headers apply to a domain
(and its subdomains optionally)

TLS can be managed per subdomain (SNI)

Isolate customer/systems for later update
to HTTPS

… while taking care of mixed-content issue

Upgrade static content servers first (server)

Cached content/CDN: headers may be
cached or the same for all users (no
authentication)

Divide and conquer

TLS version

What version of TLS will you support?

… the latest of course! (1.2)

Except if you need to support:
Java 1.6 and earlier (API)

Other libraries that only support SSL 3.0 and TLS 1.0

Internet Explorer 10 and below out of the box

TLS 1.0 has to be disabled on server side to prevent
downgrade attack

PCI compliance helps (deadline June 2016 then June 2018)

TLS version(s)

Certificate

What Certificate authority will you choose?

Which hasn’t suffered a big breach previously

(DigiNotar, Comodo)

Which has not been backdating certificates (WoSign)

Which has not been silently sold to the Chinese in

secret (StartCom)

TLS version(s)

https://threatpost.com/final-report-diginotar-hack-shows-total-compromise-ca-servers-103112/77170/
http://www.computerworld.com/article/2507258/security0/solo-iranian-hacker-takes-credit-for-comodo-certificate-attack.html
https://wiki.mozilla.org/CA:WoSign_Issues#Issue_S:_Backdated_SHA-1_Certs_.28January_2016.29
http://www.percya.com/2016/09/wosigns-secret-purchase-of-startcom.html

HTTP Headers

HSTS/HPKP/CSP are great if you browser support them

Enforce HTTPS on your domains

IE6-10 IE11-Edge Chrome Firefox Safari

HSTS 2015 4 4 Maverick 2013

HPKP 46 35

CSP 1.1/2.0 47/47 49/49 9.1/10

Supported by the browser

Not supported by the

browser

DEMO – SSL Strip

Moxie Marlinspike: More Tricks for Defeating SSL

https://youtu.be/5dhSN9aEljg?t=10m

https://youtu.be/5dhSN9aEljg?t=10m

HSTS

Force HTTPS Only with HSTS

HSTS tells the browsers to connect over HTTPS only
Optionally includes all sub-domains

“cache” duration of header

Strict-Transport-Security: max-age=31536000;
includeSubDomains

First time connection
Does not solve the first-connection issue

Many “first time”: HSTS cache expired (occasional login), new subdomain

Use includeSubDomains and make a call to the top domain

Enforce HTTPS on your domains

Limitations of HSTS

HSTS preload list

Only possible on top domain with includeSubDomains

Don’t forget about IE

Redirect HTTP to HTTPS

Use Secure cookies

… but credentials might still be sent directly over HTTP

Use HTTPS-only domain for authenticated traffic (no port

80)

Enforce HTTPS on your domains

Separate HTTPS login

Use HTTPS-only domain for

authenticated traffic

Should include login page

If you want to do fancy (AJAX) login forms

from HTTP to HTTPS sub-domain, you

need to enable CORS

Might be a good idea in theory; not seen

widely adopted.

Enforce HTTPS on your domains

HPKP: Public Key Pinning

Public Key Pinning: indicate to the browser what certificate to expect

Public-Key-Pins and Public-Key-Pins-Report-Only headers

What certificate or key to pin:
Leaf certificate: best for security but changes often, may change per host

Public key: great if you rotate leaf certificate often but use the same key
to generate them

Intermediate CA: typically changes every few years, trust put in your CA to
never issue certificates to the wrong people

Public-Key-Pins-Report-Only: pin-
sha256="9n0izTnSRF+W4W4JTq51avSXkWhQB8duS2bxVLfzXsY=";
pin-
sha256="6m4uJ26w5zoo/DLDmYNWG1dWpZ8/GSCPe6SBri8Euw0=";
max-age=604800; report-uri="https://otherdomain.com/path";

Public Key Pinning

HPKP Workflow

Public Key Pinning

Browser TLS
termination

HTTP
server/application

TLS negotiation

certificatecertific
ate HTTP Request

HTTP Response with HPKP
pin(s)

pin

≠

Public end-point

Violation
report

HPKP in practice

Consider using HPKP in reporting mode only

Several issues found:
CDN use a subdomain of xyz.com but generate the certificate
themselves.
Hard to use includeSubDomains

Public proxies/anomymizers: do not rewrite response headers but
use different CA
example: https://nodeunblock.herokuapp.com/

Chrome 38/39 uses expired pins until browser restart
It looks like some other browser has the same behavior, expired
pin is used one time for new access

Internal proxy: end up setting the HPKP header for custom
CNAMEs with customer certificates

Public Key Pinning

https://nodeunblock.herokuapp.com/

Scott Helme on Pinning

Guidance on setting up HPKP (9/15/2015)

https://scotthelme.co.uk/guidance-on-setting-up-hpkp/

I’m giving up on HPKP (8/24/2017)

https://scotthelme.co.uk/im-giving-up-on-hpkp/

Your mileage may vary …

https://scotthelme.co.uk/guidance-on-setting-up-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/

Dealing with 3rd party assets

Mixed content

You want to make sure that you don’t have mixed-

content (HTTPS loading HTTP assets)

From your own site (hardcoded references) or 3rd party

Browsers don’t (yet) block mixed-content for images (img or

CSS) , audio, video and object (“passive” content)

In a heavily customized sites, how do you check that all

assets are always loaded over HTTPS?

Customized content

Content Security Policy to the rescue!

A way of whitelisting allowed sources

HTML Meta elements can be used in place/addition of HTTP

header

CSP applies to a URL.

Customized content

CSP has many directives addressing different issues

Type of content: font-src, img-src, child-src, script-src,

connect-src, etc.

Origin allowed: ‘self ’, https: (Any HTTPS URL), data: (inline

data), none, etc.

2 CSP headers

Content-Security-Policy-Report-Only : Report only, does not

work with all directives

Content-Security-Policy : Enforce and report (when possible)

CSP format - Server

Example of CSP headers, describe where assets can be
accessed from

Content-Security-Policy-Report-Only: # Check
policy but do not enforce

default-src 'self' https://*.site.com; # Default for all
assets: same origin or site.com

img-src https://*.cdn.com; # But images
should be download for cdn.com

report-uri /my-url # Report any
violation to this URL

CSP for HTTPS

Example of CSP policy to check that all requests are done over https

Content-Security-Policy-Report-Only:
default-src https:; Any HTTPS
script-src https: 'unsafe-inline' 'unsafe-eval'; Any HTTPS,

inline, eval()
style-src https: 'unsafe-inline'; Any

HTTPS, inline
img-src https: data:; Any

HTTPS, inline
font-src https: data:; Any

HTTPS, inline
connect-src: https:; Any

HTTPS (AJAX)
report-uri: https://www.xyz.com/csp-report

CSP format –Violation report

Example of violation report (Firefox)
{"csp-report":{

"blocked-
uri":"http://pbs.twimg.com/profile_images/569909141204770816/Z4St3wts_nor
mal.jpeg",
"document-uri":"https://intertnal.my.salesforce.com/00XXXXXXXXX”
"original-policy":"default-src https:; script-src https: 'unsafe-inline' 'unsafe-eval'; style-
src https: 'unsafe-inline'; img-src https: data:; font-src https:; connect-src
https://www.salesforce.com https:; frame-ancestors https://www.salesforce.com
https://force.com https://salesforce.com; eport-uri
/_/ContentDomainCSPNoAuth?type=mydomain”,
"referrer":" https://intertnal.my.salesforce.com/00XXXXXXXXX ",
"violated-directive":"img-src https: data:“
}}

How to use CSP?

Learned from report-only mode

Inline scripts used widely

Customers using external scripts from Facebook, Skype, AWS,
Twitter, etc.

Lots of assets loaded over http

Even Report-Only Mode can cause an issue

100+ reports were generated in one page, and slowed down
performance

How to use CSP?

Different Features required different Policy

If there are multiple CSP headers, each one is applied

separately

Default CSP for every request, additional CSP headers

where needed

Enforce HTTPS on 3rd Party
Domains

CSP Report Only Mode First – Analyzing reports

periodically

Make necessary adjustments – whitelist several sources, fine-tune the policy

Make sure automatic redirection from http to https do not cause any service

interruption

Staged rollout

Based on report analysis, enforce https selectively

Give Customers option to disable CSP temporarily

Upgrade-insecure-requests &
blocked-all-mixed-content

upgrade-insecure-requests: upgrade all HTTP requests to HTTPS

Can be dangerous with 3rd-party domains: no HTTPS or invalid
certificate (EC2…)

Good to use if all assets are on your own servers

block-all-mixed-content: block mixed content for passive tags too.

Obviously these directives must be enforced (no report-only). First
directive has no report, fail silently. Second directives has reports.

General Advice for CSP

CSP is constantly changing

Stay up-to-date with new CSP directive

Introduce new CSP directive in report only mode first

Behaviors might vary depending on browsers

Some browsers did not send cookies required for

authentication

Not all directives are supported by browsers

HTTP/2

Only available for use by HTTPS

Performance improvements in all requests (binary vs

textual, fully multiplexed, header compression, etc.)

Available IIS 10 (seamless)

HTTP/2

Key takeaways

Staged rollout
Static content first

TLS set up
Decide what clients you want to support

HSTS + HPKP
Can you includeSubDomains?

Start with small max-age durations

(consider not using HPKP because of problems)

CSP
Check for http requests

Ensure not too many violations are generated

See if upgrade-insecure-requests is an option for you

HTTP/2
Check into setting up on server for performance improvements of HTTPS

Resources - Books

Bulletproof SSL and TLS by Ivan Ristic

The Tangled Web: A Guide to Securing Modern Web
Applications by Michal Zalewski

Iron-Clad Java: Building Secure Web Applications by
Jim Manico and August Detlefsen

Secure Your Node.JS Web Applications: Keep
Attackers Out and Users Happy by Karl Duuna

© 2017 Robert Hurlbut

Resources - Tools

HSTS Preload
https://hstspreload.org/

Qualys SSL Labs – SSL Server Test
https://www.ssllabs.com/ssltest/

Security Headers
https://securityheaders.io/

Automated Security Analyzer for ASP.NET Websites
https://asafaweb.com

© 2017 Robert Hurlbut

https://hstspreload.org/
https://www.ssllabs.com/ssltest/
https://securityheaders.io/
https://asafaweb.com/

Questions?

Contacts
Web Site: https://roberthurlbut.com
Twitter: @RobertHurlbut,
@AppSecPodcast

© 2017 Robert Hurlbut

https://roberthurlbut.com/
https://twitter.com/roberthurlbut
https://twitter.com/appsecpodcast

